Tampilkan postingan dengan label X wajib. Tampilkan semua postingan
Tampilkan postingan dengan label X wajib. Tampilkan semua postingan

Senin, 08 April 2019

Memahami Komposisi Fungsi - Matematika Wajib Kelas 10 Kurikulum 2013



Komposisi fungsi merupakan penggabungan dua atau lebih fungsi dengan aturan tertentu. Komposisi fungsi umumnya disimbolkan dengan simbol "$\circ$" yang dibaca : "bundaran". Prinsip komposisi fungsi bisa kita analogikan seperti beberapa mesin untuk memproduksi suatu produk. Misalnya mesin 1 mengolah bahan mentah menjadi bahan setengah jadi kemudian bahan setengah jadi tersebut diolah oleh mesin 2 sehingga menjadi suatu produk. Dalam contoh tersebut, misalnya banyaknya bahan mentah adalah $x$ diolah oleh mesin 1 sehingga diperoleh bahan setengah jadi mengikuti fungsi $f$ dan diperoleh bahan setengah jadi sebanyak $f(x)$. Bahan setengah jadi sebanyak $f(x)$ kemudian diolah oleh fungsi $g$ sehingga diperoleh suatu produk sebanyak $g(f(x))$. Notasi $g(f(x))$ inilah yang disebut sebagai komposisi fungsi, dapat pula dinyatakan dengan $(g\circ f)(x)$ dibaca: $g$ bundaran $f$. $(g \circ f)(x)$ merupakan komposisi fungsi $g$ terhadap $f$. Untuk lebih jelas, perhatikan gambar di bawah ini:


Syarat Komposisi Fungsi

Fungsi $f$ dan fungsi $g$ dapat di komposisikan menjadi $(f\circ g)(x)$ jika memenuhi syarat: "irisan daerah hasil (range) fungsi $g$ (fungsi pertama) dan daerah asal (domain) fungsi $f$ (fungsi kedua) tidak sama dengan himpunan kosong" atau dapat ditulis $R_g \cap D_f \ne \varnothing$. Dengan kata lain, komposisi dua buah fungsi akan terdefinisi jika terdapat irisan antara daerah hasil fungsi pertama dan daerah asal fungsi kedua.

Contoh:

Diketahui fungsi-fungsi sebagai berikut
$f:\{(1,5),(2,3),(3,4),(4,3)\}$
$g:\{(1,1),(2,3),(6,2)\}$

Selidikilah apakah $(f\circ g)(x)$ dan $(g\circ f)(x)$ terdefinisi?

Jawab:

untuk menyelidiki apakah $(f\circ g)(x)$ terdefinisi atau tidak, kita perlu mengetahui daerah hasil (range) dari $g$ dan daerah asal dari $f$. 

$R_g=\{1, 2, 3\}$
$D_f=\{1, 2, 3, 4\}$
$R_g\cap D_f =\{1, 2, 3\}$

Karena $R_g\cap D_f\ne \varnothing$, maka $(f\circ g)(x)$ terdefinisi

untuk menyelidiki apakah $(g\circ f)(x)$ terdefinisi atau tidak, kita perlu mengetahui daerah hasil (range) dari $f$ dan daerah asalh (domain) dari $g$

$R_f=\{3, 4, 5\}$
$D_g=\{1, 2, 6\}$
$R_f\cap D_g=\varnothing$

Karena $R_f\cap D_g=\varnothing$, maka$(g\circ f)(x)$ tidak terdefinisi

Sifat-sifat komposisi Fungsi

Diketahui $f$, $g$ dan $h$ suatu fungsi dan $I(x)=x$ suatu fungsi identitas. Jika $R_h\cap D_g\ne \varnothing$, $R_g\cap D_f\ne \varnothing$ dan $R_I\cap D_f\ne \varnothing$ maka pada operasi komposisi fungsi berlaku sifat-sifat sebagai berikut:

1. Tidak berlaku sifat komutatif


$g\circ f \ne f \circ g$

2. Berlaku sifat asosiatif


$f\circ (g\circ h)=(f \circ g)\circ h$

3. Berlaku sifat identitas


$f\circ I=I\circ f = f$


Beberapa Contoh Soal dan Pembahasan Komposisi Fungsi

Berikut ini kami sajikan beberapa contoh soal komposisi fungsi dengan bentuk soal yang variatif terdiri dari soal harian (umum), soal ujian nasional dan soal SBMPTN (soal seleksi masuk PTN) dan beberapa diantaranya masuk kategori soal HOTS (Higher Order Thinking Skills). 


Contoh 1 (Ujian Nasional 2016 Matematika IPA)

Diketahui $f:R\to R$ dan $g: R\to R$ didefinisikan dengan $f(x)=x^2 -2x-3$ dan $g(x)=x+6$. Fungsi komposisi $(f\circ g)(x)$ adalah ....
A. $(f\circ g)(x)=x^2-2x+3$
B. $(f\circ g)(x)=x^2-2x-9$
C. $(f\circ g)(x)=x^2+10x-21$
D. $(f\circ g)(x)=x^2+10x+21$
E. $(f\circ g)(x)=x^2-10x-21$

Pembahasan:

$\begin{align*}(f\circ g)(x)&=f(g(x))\\&=(x+6)^2-2(x+6)-3\\&=x^2+12x+36-2x-12-3\\&=x^2+10x+21\end{align*}$

Contoh 2 

Diketahui $f(x)=3x-1$ dan $g(x)=2x^2-3$. Komposisi fungsi $(g\circ f)(x)$ adalah ....
A. $9x^2-3x+1$
B. $9x^2-6x+3$
C. $9x^2-6x+6$
D. $18x^2-12x-2$
E. $18x^2-12x-1$

Pembahasan:

$\begin{align*}(g\circ f)(x)&=g(f(x))\\&=2(3x-1)^2-3\\&=2(9x^2-6x+1)-3\\&=18x^2-12x+2-3\\&=18x^2-12x-1\end{align*}$

Contoh 3

Diketahui $(f\circ g)(x)=4x^2+20x+23$ dan $g(x)=2x+5$. Rumus fungsi $f(x)$ adalah ....
A. $x^2-2$
B. $2x^2-1$
C. $\frac{1}{2}x^2-2$
D. $\frac{1}{2}x^2+2$
E. $\frac{1}{2}x^2-1$

Pembahasan:

Misal $2x+5=p$ maka $x=\frac{p-5}{2}$

$\begin{align*}(f\circ g)(x) &=4x^2+20x+23 \\ f(g(x))&=4x^2+20x+23 \\ f(2x+5)&=4x^2+20x+23 \\ f(p)&=4\left(\frac{p-5}{2}\right)^2+20\left(\frac{p-5}{2}\right) +23\\&=4\left(\frac{p^2-10p+25}{4}\right)+10(p-5)+23\\&=p^2-10p+25+10p-50+23\\&=p^2-2\end{align*}$

Jadi, $f(x)=x^2-2$


Contoh 4

Diketahui $(f\circ g)(x)=2x^2+4x+5$ dan $f(x)=2x+3$, maka $g(x)=$ ....
A. $x^2+2x+1$
B. $x^2+2x+2$
C. $2x^2+x+2$
D. $2x^2+4x+2$
E. $2x^2+4x+1$

Pembahasan:

$\begin{align*}(f\circ g)(x)&=2x^2+4x+5\\ f(g(x))&=2x^2+4x+5\\2(g(x))+3&=2x^2+4x+5\\2(g(x))&=2x^2+4x+5-3\\2(g(x))&=2x^2+4x+2\\g(x)&=x^2+2x+1\end{align*}$

Contoh 5 (Ujian Nasional 2017 Matematika IPA)

Diketahui fungsi $f:R\to R$, dan $g:R\to R$ dengan $g(x)=-x+3$ dan $(f\circ g)(x)=4x^2-26x+32$, maka nilai $f(1)$ adalah ....
A. $-5$
B. $-4$
C. $-3$
D. $3$
E. $4$

Pembahasan:

Perhatikan bahwa $(f\circ g)(x)=f\left(g(x)\right)$, untuk mencari nilai $f(1)$ kita perlu membuat $g(x)=1$. 

$\begin{align*}g(x)&=-x+3\\1&=-x+3\\x&=3-1\\x&=2\end{align*}$

Jadi $g(2)=1$

$\begin{align*}f(g(x))&=4x^2-26x+32 \\ f(g(2))&=4(2)^2-26(2)+32\\f(1)&=4(4)-52+32\\&=16-20\\&=-4\end{align*}$

Contoh 6 (Ujian Nasional 2018 Matematika IPA - HOTS)

Untuk menambah uang saku, Didi berniat membantu kakaknya berjualan makanan. Didi akan mendapatkan uang saku berdasarkan jumlah makanan yang terjual pada hari tersebut dengan fungsi $P(x)=1.000x+200$, dengan $P$ adalah uang saku dalam rupiah dan $x$ adalah jumlah makanan yang terjual. Ternyata, jumlah makanan yang terjual tergantung pada waktu yang digunakan Didi untuk berjualan dengan $x=f(t)=3t+2$, dengan $t$ adalah waktu dalam jam. Uang saku yang diperoleh Didi jika ia berjualan selama 3 jam suatu hari libur adalah ....
A. Rp11.500,00
B. Rp11.200,00
C. Rp10.500,00
D. Rp10.200,00
E. Rp9.500,00

Pembahasan:

$\begin{align*}P(f(t)))&=1.000(3t+2)+200\\&=3.000t+2.000+200\\&=3.000t+2.200\end{align*}$

untuk $t=3$

$\begin{align*}P(f(3))&=3.000(3)+2.200\\&=9.000+2.200\\&=11.200\end{align*}$


Contoh 7 (SBMPTN 2016 Kode 317)

Perhatikan tabel berikut



Maka $(f\circ g)(1)+(g\circ f\circ g)(2)=$ ....
A. $-1$
B. $1$
C. $2$
D. $3$
E. $5$

Pembahasan:

Dari tabel kita peroleh:
$g(1)=0$,  $f(0)=1$,  $g(2)=1$,  $f(1)=3$, dan $g(3)=2$

Maka:
$\begin{align*}(f\circ g)(1)+(g\circ f\circ g)(2)&=f(g(1))+g(f(g(2)))\\&=f(0)+g(f(1))\\&=1+g(3)\\&=1+2\\&=3\end{align*}$

Kamis, 13 September 2018

Cara Menyelesaikan Pertidaksamaan Rasional atau Pertidaksamaan Pecahan (Matematika Wajib kelas X)



Pertidaksamaan rasional adalah  pertidaksamaan yang berbentuk pecahan dengan pembilang dan penyebut memuat variabel atau hanya penyebutnya saja yang memuat variabel. Berikut ini beberapa contoh pertidaksamaan rasional.

$\displaystyle\frac{2x-1}{x+3}\geq 0$

$\displaystyle\frac{x^2-1}{x+7}\leq 5$

$\displaystyle\frac{5}{2x-1}\gt \frac{x+1}{x-5}$

Di atas, ada 3 contoh pertidaksamaan rasional atau pertidaksamaan pecahan dengan bentuk yang berbeda. Namun, bagaimanapun bentuknya, pertidaksamaan rasional selalu dapat diubah sehingga menjadi salah satu dari bentuk umum pertidaksamaan rasional sebagai berikut:

$\displaystyle\frac{f(x)}{g(x)}\lt 0$ atau $\displaystyle\frac{f(x)}{g(x)}\leq 0$

$\displaystyle\frac{f(x)}{g(x)}\gt 0$ atau $\displaystyle\frac{f(x)}{g(x)}\geq 0$

Dengan $f(x)$ sebagai fungsi pembilang dan $g(x)$ sebagai fungsi penyebut dan $g(x)\ne 0$.

Bagaimana Cara Menyelesaikan Pertidaksamaan Rasional?


Berikut ini beberapa langkah penyelesaian pertidaksamaan rasional atau pertidaksamaan pecahan:


Langkah-langkah penyelesaian pertidaksamaan rasional:

Ubah ruas kanan pertidaksamaan menjadi nol

 Jika fungsi pembilang atau fungsi penyebut berupa polinomial derajat lebih dari 1, maka faktorkan
 Cari titik kritis atau pembuat nol fungsi pembilang dan fungsi penyebut
 Gambar pada garis bilangan
 Lakukan pengujian daerah yang dibatasi titik kritis pada garis bilangan
 Tentukan himpunan penyelesaian

Perlu diingat bahwa penyebut tidak boleh bernilai nol, dengan demikian saat menggambar garis bilangan, titik kritis yang diperoleh dari penyebut selalu digambarkan dengan bulatan kosong, artinya titik tersebut tidak termasuk penyelesaian meskipun tanda pertidaksamaan pada soal memuat tanda sama dengan ($\leq$ atau $\geq$).

Contoh Soal dan Penyelesaian




Untuk lebih memahami cara menyelesaiakan pertidaksamaan rasional, perhatikan contoh soal dan pembahasan berikut ini.


Soal pertama yang akan kita selesaiakan adalah pertidaksamaan rasional berikut:


$\displaystyle\frac{5x-20}{x-5}\leq 3$

Langkah pertama, kita perlu menjadikan ruas kanan pada pertidaksamaan menjadi nol, yaitu dengan dengan mengurangi kedua ruas dengan $3$, kemudian sederhanakan bentuk pada ruas kiri dengan menyamakan penyebutnya

$\begin{align*}\frac{5x-20}{x-5}-3&\leq 3-3\\ \frac{5x-20}{x-5}-3&\leq 0 \\ \frac{5x-20}{x-5}-\frac{3(x-5)}{x-5}&\leq 0\\ \frac{5x-20-3x+15}{x-5}&\leq 0\\ \frac{2x-5}{x-5}&\leq 0\end{align*}$

Langkah kedua, kita tentukan titik kritis, yaitu pembuat nol pada pembilang dan penyebut.

Pembuat nol pada pembilang adalah $\displaystyle 2x-5=0\Leftrightarrow x=\frac{5}{2}$
Pembuat nol pada penyebut adalah $\displaystyle x-5=0\Leftrightarrow x=5$

Langkah ketiga, kita buat garis bilangan yang memuat beberapa daerah yang dibatasi oleh titik kritis yang kita peroleh dari langkah kedua, dan perlu diingat pada titik kritis yang diperoleh dari penyebut digambarkan dengan tanda bulatan kosong meskipun pertidaksamaan yang sedang kita selesaikan $\leq$.


Langkah keempat, tentukan tanda masing-masing daerah pada garis bilangan dengan melakukan pengujian.

Pada garis bilangan di atas, kita peroleh tiga daerah, yaitu $x\leq\frac{5}{2}$ kita sebut saja "daerah kiri",  daerah $\frac{5}{2}\leq x \lt 5$ kita sebut sebagai "daerah tengah" dan daerah $x\gt 5$ kita sebut sebagai "daerah kanan".

Pada masing-masing daerah tersebut kita ambil sembarang angka penguji, misal untuk daerah kiri $(x\leq \frac{5}{2})$ saya ambil $x=0$, untuk daerah tengah $(\frac{5}{2}\leq x\lt 5)$ saya ambil $x=3$, dan untuk daerah kanan $(x\gt 5)$ saya ambil $x=6$ sebagai penguji. Dengan mensubstitusi titik-titik penguji tersebut ke fungsi rasional $\displaystyle \frac{2x-5}{x-5}$ maka kita peroleh:
Titik Uji
$2x-5$
$x-5$
$\displaystyle\frac{2x-5}{x-5}$
$x=0$
$(-)$
$(-)$
$\frac{(-)}{(-)}=(+)$
$x=3$
$(+)$
$(-)$
$\frac{(+)}{(-)}=(-)$
$x=6$
$(+)$
$(+)$
$\frac{(+)}{(+)}=(+)$

Langkah kelima, kita tentukan himpunan penyelesaian dengan kembali memperhatikan tanda pertidaksamaan dan tanda pada garis bilangan.

Pertidaksamaan $\displaystyle\frac{2x-5}{x-5}\leq 0$ memiliki tanda pertidaksamaan $\leq$, dengan demikian himpunan penyelesaiannya adalah yang bertanda negatif atau atau nol $(\leq 0)$, yaitu daerah tengah pada garis bilangan tadi.



maka himpunan penyelesaian dari pertidaksamaan $\displaystyle \frac{5x-20}{x-5}\leq 3$ adalah $\left\{x | \frac{5}{2}\leq x \lt 5, x\in R\right\}$

Masalah Pertidaksamaan Rasional Yang Memuat Faktor Persekutuan Pembilang dan Penyebut



Berikutnya, kita akan mencoba menyelesaiak pertidaksamaan berikut ini:

$$\frac{x^3-3x^2-8x-10}{x^2-3x-10}\lt 1$$

Dengan mengurangi kedua ruas dengan 1 kita peroleh:


$\begin{align*}\frac{x^3-3x^2-8x-10}{x^2-3x-10}-1&\lt 1-1\\ \frac{x^3-3x^2-8x-10}{x^2-3x-10}-1&\lt 0\\ \frac{x^3-3x^2-8x-10}{x^2-3x-10}-\frac{x^2-3x-10}{x^2-3x-10}&\lt 0\\ \frac{x^3-3x^2-8x-10-x^2+3x+10}{x^2-3x-10}&\lt 0\\ \frac{x^3-4x^2-5x}{x^2-3x-10}&\lt 0\end{align*}$


Berikutnya, kita faktorkan pembilang dan penyebut sehingga kita peroleh


$\displaystyle\frac{x(x+1)(x-5)}{(x+2)(x-5)}\lt 0$


Seperti yang kita lihat, terdapat faktor persekutuan pada pembilang dan penyebut, yaitu $(x-5)$, pada pertidaksamaan rasional faktor persekutuan tidak boleh kita sederhanakan atau bahkan kita hilangkan, hal yang umum dilakukan jika terdapat faktor persekutuan misalnya $(ax+b)$ maka kita kalikan dengan $(ax+b)^2$ yang sudah jelas positif dan tidak merubah tanda pertidaksamaan. Jadi, untuk pertidaksamaan di atas, kedua ruas kita kali dengan $(x-5)^2$ dengan $x\ne 5$ sehingga kita peroleh:


$\displaystyle\frac{x(x+1)(x-5)^2}{x+2}\lt 0$


titik kritis (pembuat nol) dari pembilang dan penyebut yang kita peroleh adalah: $x=0$, $x=-1$, $x=5$ dan $x=-2$, maka bisa kita buat garis bilangan sebagai berikut:




Dengan melakukan pengujian masing-masing daerah, kita peroleh tanda sebagai berikut:



tanda yang diminta pada pertidaksamaan terakhir adalah $\lt 0$ atau negatif, dipenuhi oleh daerah yang diarsir berikut:





maka himpunan penyelesaian pertidaksamaan $\displaystyle\frac{x^3-3x^2-8x-10}{x^2-3x-10}\lt 1$ adalah $\{x| x\lt -2\text{ atau }-1\lt x \lt 0, x\in R\}$


Masalah Pertidaksamaan Rasional yang Memuat Fungsi Definit



Secara bahasa, definit artinya pasti. Dalam matematika terutama yang berkaitan dengan fungsi kuadrat dikenal dua definit yaitu definit positif dan definit negatif. Definit positif artinya fungsi tersebut selalu menghasilkan nilai positif untuk setiap $x$ anggota bilangan real, dan definit negatif artinya fungsi selalu menghasilkan nilai negatif untuk setiap $x$ anggota bilangan real.

Fungsi kuadrat $y=ax^2+bx+c$ dikatakan definit positif jika $a\gt 0$ dan $b^2-4ac\lt 0$, maka untuk berapapun nilai $x$ anggota bilangan real, nilai $y$ selalu positif.

Fungsi kuadrat $y=ax^2+bx+c$ dikatakan definit negatif jika $a\lt 0$ dan $b^2-4ac\lt 0$, maka untuk berapapun nilai $x$ anggota bilangan real, nilai $y$ selalu negatif.

Perhatikan contoh pertidaksamaan rasional berikut:

Himpunan penyelesaian pertidaksamaan $\displaystyle\frac{(x-1)(2x+4)}{(x^2+4)}\lt 1$ adalah ....

Penyelesaian:

$\begin{align*}\frac{(x-1)(2x+4)}{(x^2+4)}-1&\lt 0 \\ \frac{(2x^2+2x-4)-(x^2+4)}{(x^2+4)}&\lt 0\\ \frac{x^2+2x-8}{x^2+4}&\lt 0\end{align*}$

Karena $x^2+4$ merupakan definit positif, maka kita hanya perlu memperhatikan pembilangnya saja.

$\begin{align*}x^2+2x-8&\lt 0\\(x+4)(x-2)&\lt 0\end{align*}$

Titik kritisnya adalah $x=-4$ dan $x=2$, maka garis bilangannya sebagai berikut:


Jadi, himpunan penyelesaian dari pertidaksamaan $\displaystyle\frac{(x-1)(2x+4)}{(x^2+4)}\lt 1$ adalah $\{x | -4\lt x\lt 2\}$

Jika anda sudah paham, silakan coba soal online pertidaksamaan rasional berikut sebagai bahan latihan. Semoga bermanfaat, demikianlah materi pertidaksamaan rasional kelas X matematika wajib.

Minggu, 10 Juni 2018

Cara Menyelesaikan Pertidaksamaan Nilai Mutlak - Konsep Dasar, Contoh Soal dan Pembahasan


m4th-lab.net - Menyelesaikan pertidaksamaan nilai mutlak - Konsep dasar, contoh soal dan pembahasan

Sebelumnya, m4th-lab telah menyajikan penjelasan konsep dasar nilai mutlak, persamaan nilai mutlak dilengkapi dengan contoh soal dan pembahasan yang merupakan materi matematika wajib kurikulum 2013 revisi yang dipelajari di kelas 10 semester pertama (semester ganjil). Melanjutkan materi tersebut, kali ini kita akan belajar materi pertidaksamaan nilai mutlak.

Apa itu pertidaksamaan nilai mutlak?

Pertidaksamaan nilai mutlak merupakan pertidaksamaan yang variabelnya berada dalam tanda mutlak. Ada banyak cara yang dapat kita lakukan untuk menyelesaikan berbagai bentuk pertidaksamaan nilai mutlak diantaranya:

  1. Menyelesaiakan pertidaksamaan nilai mutlak bentuk umum
  2. Menyelesaiakan pertidaksamaan nilai mutlak dengan mengkuadratkan kedua ruas
  3. Menyelesaikan pertidaksamaan nilai mutlak dengan grafik
  4. Menyelesaikan pertidaksamaan nilai mutlak dengan analisis $x$ (Definisi Nilai Mutlak)

Untuk lebih jelasnya perhatikan beberapa contoh soal dan berbagai cara menyelesaikan pertidaksamaan nilai mutlak yang akan di bahas pada tulisan ini.

Catatan: Jika saat membuka laman ini terjadi "Math Processing Error" silakan reload laman. Sangat disarankan membuka laman ini melalui PC/Laptop untuk menghindari equation yang terpotong, atau jika menggunakan mobile/android silakan buka dengan mode landscape bukan portrait.

Bagaimana Cara Menyelesaikan Pertidaksamaan Nilai Mutlak?

1. Menyelesaikan Pertidaksamaan Nilai Mutlak Bentuk Umum

untuk bentuk tertentu, pertidaksamaan nilai mutlak dapat diselesaiakan secara umum sebagai berikut:


  1. Bentuk $\left |f(x)\right| \lt p$ dapat diubah ke bentuk $-p\lt f(x)\lt p$
  2. Bentuk $\left |f(x) \right|\gt p$ dapat diubah ke bentuk $f(x)\lt -p$ atau $f(x)\gt p$
  3. Bentuk $\left | f(x) \right |\gt\left |g(x)\right|$ dapat diubah ke bentuk $\left(f\left(x\right) +g\left(x\right)\right)\left(f\left(x\right)-g\left(x\right)\right)\gt 0$
  4. Bentuk $\left | f(x) \right |\lt\left |g(x)\right|$ dapat diubah ke bentuk $\left(f\left(x\right) +g\left(x\right)\right)\left(f\left(x\right)-g\left(x\right)\right)\lt 0$
  5. Bentuk $\frac{\left|f(x)\right|}{\left|g(x)\right|}\lt k$ dapat diubah menjadi $\left(f(x)+k.g(x)\right)\left(f(x)-k.g(x)\right)\lt 0$
  6. Bentuk $\frac{\left|f(x)\right|}{\left|g(x)\right|}\gt k$ dapat diubah menjadi $\left(f(x)+k.g(x)\right)\left(f(x)-k.g(x)\right)\gt 0$

Perhatikan beberpa contoh berikut:

Contoh 1:

Tentukan nilai $x$ yang memenuhi pertidaksamaan $\left |3x-1 \right|-2\lt 5$

Jawab:

$\begin{align*}|3x-1|-2&\lt 5\\|3x-1|&\lt 7\end{align*}$

Petidaksamaan di atas sesuai dengan bentuk $|f(x)|\lt p$ maka dapat kita ubah ke bentuk $-p\lt f(x)\lt p$. Dengan demikian pertidaksamaan $|3x-1|\lt 7$  dapat diubah menjdi:
$$-7\lt 3x-1\lt 7\\-7+1\lt 3x-1+1\lt  7+1\\-6\lt 3x \lt 8\\-2\lt x \lt \frac{8}{3} $$







Contoh 2:

Tentukan nilai $x$ yang memenuhi pertidaksamaan $|3x-2|\gt 4$

Jawab 2 :

Bentuk pertidaksamaan di atas sesuai dengan bentuk $|f(x)|\gt p$ maka dapat diubah ke bentuk $f(x)\lt-p$ atau $f(x)\gt p$
$$|3x-2|\gt 4\\3x-2\lt -4 \space \text{atau}\space 3x-2\gt 4\\3x\lt -2 \space\text{atau}\space 3x\gt 6\\x\lt -\frac{2}{3}\space\text{atau}\space x\gt 2$$




Contoh 3:


Tentukan nilai $x$ yang memenuhi $|2-x|\geq |2x-1|$


Jawab:


$|2-x|\geq|2x-1|$ memenuhi bentuk $|f(x)|\geq|g(x)|$ maka bisa kita ubah menjadi $\left(f(x)+g(x)\right)\left(f(x)-g(x)\right)\geq 0$


$\begin{align*}\left(2-x+2x-1\right)\left(2-x-(2x-1)\right)&\geq 0\\ \left(x+1\right)\left(2-x-2x+1\right)&\geq 0\\(x+1)(-3x+3)&\geq 0 \space\text{kedua rusa kali  }(-1)\\(x+1)(3x-3)&\leq 0\\-1\leq x&\leq 1\end{align*}$






Contoh 4:

Tentukan nilai $x$  yang memenuhi pertidaksamaan $|2x-3|\leq|x+4|$


Jawab:


Pertidaksamaan $|2x-3|\leq|x+4|$ memenuhi pertidaksamaan $|f(x)|\leq|g(x)|$, maka dapat kita ubah menjadi $(f(x)+g(x))(f(x)-g(x))\leq 0$


$\begin{align*}|2x-3|&\leq|x+4|\\(2x-3+x+4)(2x-3-(x+4))&\leq 0\\(3x+1)(2x-3-x-4)&\leq 0\\(3x+1)(x-7)&\leq 0\\-\frac{1}{3}\leq x&\leq 7\end{align*}$




Contoh 5:

Tentukan penyelesaian dari pertidaksamaan $\left|\frac{2x-1}{x+5}\right|\gt 3$


Jawab:


Pertidaksaman $\left|\frac{2x-1}{x+5}\right|\gt 3$ memenuhi bentuk $\frac{\left|f(x)\right|}{\left|g(x)\right|}\gt k$ maka dapat diubah menjadi $\left(f(x)+k.g(x)\right)\left(f(x)-k.g(x)\right)\gt 0$


$\begin{align*}\left(2x-1+3(x+5)\right)\left(2x-1-3(x+5)\right)&\gt 0\\ \left(2x-1+3x+15\right)\left(2x-1-3x-15\right)&\gt 0\\(5x+14)(-x-16)&\gt 0\space\text{kali dengan }(-1)\\(5x+14)(x+16)&\lt 0\\-16\lt x &\lt -\frac{14}{5}\end{align*}$



Contoh 6:

Tentukan penyelesaian dari pertidaksamaan $\left| 3+\frac{7}{x}\right|\gt 1$

Jawab:

$\begin{align*}\left|3+\frac{7}{x}\right|&\gt 1\\ \left|\frac{3x+7}{x}\right|&\gt 1\end{align*}$

Pertidaksamaan $\left| \frac{3x+7}{x}\right|\gt 1$ memenuhi bentuk $\frac{\left|f(x)\right|}{\left|g(x)\right|}\gt k$ dapat diubah menjadi $\left(f(x)+k.g(x)\right)\left(f(x)-k.g(x)\right)\gt 0$ 

$\begin{align*}\left|\frac{3x+7}{x}\right|&\gt 1\\(3x+7+x)(3x+7-x)&\gt 0\\(4x+7)(2x+7)&\gt 0\\x\lt -\frac{7}{2}\space\text{atau}\space x\gt -\frac{7}{4}\end{align*}$






2. Menyelesaikan Pertidaksamaan Nilai Mutlak Dengan Mengkuadratkan Kedua Ruas

Menyelesaikan pertidaksamaan nillai mutlak dengan cara mengkuadratkan kedua ruas hanya boleh dilakuakan jika kedua ruas bernilai positif. Perhatikan contoh-contoh berikut:

Contoh 7: (soal sama dengan contoh 2)

Penyelesaian dari pertidaksamaan $|3x-2|\gt 4$ adalah ....

Jawab:

Karena ruas kiri dan ruas kanan pertidaksamaan bernilai positif, maka dapat kita selesaikan dengan cara mengkuadratkan kedua ruas.

$\begin{align*}\left(|3x-2|\right)^2&\gt 4^2\\9x^2-12x+4&\gt 16\\9x^2-12x-12&\gt 0\space \text{bagi dengan 3}\\3x^2-4x-4&\gt 0\\(3x+2)(x-2)&\gt 0\\x\lt -\frac{2}{3}\space \text{atau}\space x&\gt 2\end{align*}$ 



Contoh 8: (soal sama dengan contoh 3)

Tentukan nilai $x$ yang memenuhi $|2-x|\geq |2x-1|$

Jawab:

Karena kedua ruas bernilai positif, maka dapat kita selesaikan dengan cara mengkuadratkan kedua ruas.

$\begin{align*}\left(|2-x|\right)^2&\geq\left(|2x-1|\right)^2\\4-4x+x^2&\geq 4x^2-4x+1\\-3x^2+3&\geq 0\space\text{kedua ruas bagi }(-3)\\x^2-1&\leq 0\\()(x+1)(x-1)&\leq 0\\-1\leq x&\leq 1\end{align*}$



3. Menyelesaikan Pertidaksamaan Nilai Mutlak dengan Grafik

Menyelesaikan pertidaksamaan nilai mutlak dengan metode grafik cara menggunakannya adalah dengan memisalkan pertidaksamaan ruas kiri dan ruas kanan sebagai fungsi yang berbeda. Misal ruas kiri sebagai $y_1$ dan ruas kanan sebagai $y_2$. Jika tanda pertidaksamaan $\gt$ atau $\geq$ maka jawabannya adalah himpunan $y_1$ yang terletak  di atas $y_2$. Begitu pula sebaliknya, jika tanda pertidaksamaan $\lt$ atau $\leq$ maka penyelesiannya $y_1$ yang terletak di bawah $y_2$.
Untuk lebih jelasnya perhatikan contoh di bawah ini.

Contoh 9:

Penyelesaian dari pertidaksamaan $|x-2|\gt $3 adalah ....

Jawab:

misal $y_1=|x-2|$ dan $y_2=3$
Selanjutnya, kita buat grafik kedua fungsi
warna biru merupakan grafik fungsi $y_1=|x-2|$ dan warna merah merupakan grafik fungsi $y_2=3$.
Kedua grafik fungsi berpotongan di $x=-1$ dan $x=5$, untuk pertidaksamaan $|x-2|\gt 3$, maka lihat pada grafik dimana  warna biru terletak di atas warna merah. Maka penyelesaiaannya adalah $x\lt -1$ atau $x\gt 5$



4. Menyelesaikan Pertidaksamaan Nilai Mutlak dengan Analisi Nilai $x$ (Sifat Nilai Mutlak)

Menyelesaikan pertidaksamaan nilai mutlak dengan cara melakukan analisis nilai $x$ dan kemudian memperhatikan definisi nilai mutlak merupakan cara yang paling "aman" dilakukan, selain itu cara ini juga berlaku untuk berbagai bentuk pertidaksamaan nilai mutlak.

Langkah-langkah menyelesaikan pertidaksamaan nilai mutlak dengan analisis nilai $x$ adalah sebagi berikut:


untuk bentuk tertentu, pertidaksamaan nilai mutlak dapat diselesaiakan secara umum sebagai berikut:



  1. Tentukan pembuat nol nilai mutlak kemudian jadikan nilai pembuat nol tersebut sebagi batas interval.
  2. Tentukan bentuk sederhana setiap nilai mutlak pada interval nilai $x$ yang sudah ditentukan dan cari irisan penyelesaian nilai mutlak. Penyelesaian yang diperoleh merupakan penyelesaian pada interval tersebut
  3. Penyelesaian pertidaksamaan adalah gabungan penyelesaian setiap interval


    perhatikan beberpa contoh berikut:

    Contoh 10: (SBMPTN 2017 Matematika IPA Kode 139)

    Banyak bilangan bulat positif $x$ yang memenuhi pertidaksamaan $\frac{x-|2-x|}{x^2-3x-10}\leq 0$ adalah ....
    A. 2
    B. 3
    C. 4
    D. 5
    E. 6

    Jawab:

    Pembuat nol pertidaksamaan:
    $2-x=0 \Leftrightarrow  x=2$
    maka interval yang kita peroleh adalah $x\leq 2$ dan $x\geq 2$

    Untuk $x\leq 2$

    untuk $x\leq 2$ maka $|2-x|=2-x$, sehingga pertidaksamaan diperoleh:
    $\begin{align*}\frac{x-(2-x)}{x^2-3x-10}&\leq 0 \\ \frac{2x-2}{(x-5)(x+2)}&\leq 0\end{align*}$

    Titik kritis: $x=-2$, $x=1$, $x=5$
    nilai $x$ yang memenuhi pada interval $x\leq 2$ adalah $x\lt -2$ atau $1\leq x\leq 2$, maka bilangan bulat yang memenuhi penyelesaian tersebut adalah 1 dan 2

    Untuk $x\geq 2$

    Untuk $x\geq 2$ maka $|2-x|=-(2-x)=x-2$ sehingga pertidaksamaan diperoleh:

    $\begin{align*}\frac{x-(x-2)}{x^2-3x-10}&\leq 0\\ \frac{2}{(x-5)(x+2)}&\leq 0\end{align*}$

    Titik kritis: $x=-2$ dan $x=5$

    nilai $x$ yang memenuhi pada interval $x\geq 2$ adalah $2\leq x \lt 5$, maka bilangan bulat yang memenuhi penyelesaian tersebut adalah 2, 3, 4

    Dengan demikian, nilai bulat yang memenuhi interval $x\leq 2$ dan $x\geq 2$ adalah 1, 2, 3, 4 ada sebanyak 4 buah bilangan bulat, maka jawaban yang tepat adalah C

    Demikianlah beberapa cara menyelesaikan pertidaksamaan nilai mutlak. Semoga dapat membantu