Selasa, 21 Agustus 2018

Cara Merasionalkan Penyebut Bentuk Akar Pangkat Tiga Dilengkapi Soal Penerapan



Materi tentang pangkat (eksponen) dan akar sudah diperkenalkan sejak SMP, termasuk bagaimana cara merasionalkan bentuk bilangan pecahan dengan penyebut berbentuk akar. Namun sebagian besar referensi belajar yang digunakan di sekolah hanya sebatas merasionalkan bentuk akar kuadrat. Masih jarang buku yang membahas bagaimana cara merasionalkan bentuk akar pangkat tiga. Padahal, cara merasionalkan bentuk akar pangkat tiga sangat penting sebagai penunjang materi lainnya, misalnya dalam menyelesaikan limit fungsi aljabar yang memuat akar pangkat tiga tanpa menggunkan dalil L'Hopital.

Kita sudah diperkenalkan cara merasionalkan bentuk pecahan dengan penyebut akar kuadrat adalah dengan mengalikan dengan bentuk sekawannya, misalnya $\displaystyle\frac{1}{\sqrt{5}-2}$ dapat kita rasionalkan dengan mengalikannya dengan $\displaystyle\frac{\sqrt{5}+2}{\sqrt{5}+2}$ karena bentuk sekawan dari $\displaystyle \sqrt{5}-2$ adalah $\displaystyle \sqrt{5}+2$. Lalu bagaimana cara merasionalkan bentuk ini $\displaystyle\frac{3}{\sqrt[3]{5}-\sqrt[3]{2}}$?. Jika anda pikir cara merasionalkan bentuk tersebut adalah dengan mengalikannya dengan $\displaystyle\frac{\sqrt[3]{5}+\sqrt[3]{2}}{\sqrt[3]{5}+\sqrt[3]{2}}$ maka anda keliru. Untuk dapat menyelesaikannya mari kita pahami terlebih dahulu mengenai definisi dari bentuk akar sekawan berikut.


Informasi:
Tulisan pada laman ini memuat persamaan matematika yang cukup panjang dan tidak responsive pada media mobile, jika tampilan persamaan matematika di smartphone anda terpotong, silakan buka laman ini dalam mode landscape, Sangat disarankan membuka laman ini via PC/Laptop


Apa Definisi Dari Akar Sekawan?

Bersumber dari Ensiklopedia Matematika yang ditulis oleh ST. Nugroho dan B. Harahap, definisi dari akar sekawan adalah sebagai berikut:
Definisi Akar Sekawan
Dua bentuk akar dikatakan sekawan jika hasil kali kedua bilangan irasional (bentuk akar) adalah bilangan rasional

$\displaystyle\sqrt{a}+\sqrt{b}$ sekawan dengan $\displaystyle\sqrt{a}-\sqrt{b}$ sebab $\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b$


Perhatikan beberapa contoh akar sekawan berikut:


$2-\sqrt{3}$ sekawan dengan $2+\sqrt{3}$ sebab $\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1$


$\sqrt{5}+\sqrt{2}$ sekawan dengan $\sqrt{5}-\sqrt{2}$ sebab $\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)=5-2=3$


$\sqrt{8}$ sekawan dengan$\sqrt{2}$, sebab $\sqrt{8}\times\sqrt{2}=\sqrt{16}=4$



Bentuk Sekawan Akar Pangkat Tiga


Bentuk sekawan dari $\displaystyle\sqrt[3]{a}$ adalah $\displaystyle\sqrt[3]{a^2}$, sebab:

$\begin{align*}\sqrt[3]{a}\times\sqrt[3]{a^2}&=a^{\frac{1}{3}}\times a^{\frac{2}{3}}\\&=a^{\frac{1}{3}+\frac{2}{3}}\\&=a^{\frac{3}{3}}\\&=a^1\\&=a\end{align*}$


Sekarang, bagaimana bentuk akar sekawan dari $\displaystyle\sqrt[3]{a}+\sqrt[3]{b}$?

Bentuk akar sekawan dari bentuk di atas pastinya harus menyebabkan "muncul" pangkat tiga pada kedua suku bentuk akar di atas, bentuk aljabar sebagai landasan yang akan kita gunakan adalah sebagai berikut:

$\begin{align*}x^3-y^3&=(x-y)(x^2+xy+y^2)\\x^3+y^3&=(x+y)(x^2-xy+y^2)\end{align*}$

Contoh, akar sekawan dari $\displaystyle\sqrt[3]{5}-\sqrt[3]{2}$ adalah $\displaystyle\left(\sqrt[3]{5}\right)^2+\sqrt[3]{5}.\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^2$ atau bisa juga ditulis $\displaystyle\sqrt[3]{25}+\sqrt[3]{10}+\sqrt[3]{4}$ sebab:

$\begin{align*}\left(\sqrt[3]{5}-\sqrt[3]{2}\right)\left(\sqrt[3]{25}+\sqrt[3]{10}+\sqrt[3]{4}\right)&=\left(\sqrt[3]{5}\right)^3-\left(\sqrt[3]{2}\right)^3\\&=5-2\\&=3\end{align*}$


Berikut ini bentuk-bentuk akar sekawan akar pangkat tiga:




Bentuk sekawan dari $\displaystyle\sqrt[3]{a}$ adalah $\displaystyle\sqrt[3]{a^2}$


Bentuk sekawan dari $\displaystyle\sqrt[3]{a}-\sqrt[3]{b}$ adalah $\displaystyle\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}$


Bentuk sekawan dari $\displaystyle\sqrt[3]{a}+\sqrt[3]{b}$ adalah $\displaystyle\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}$


Bentuk sekawan dari $\displaystyle a-\sqrt[3]{b}$ adalah $\displaystyle a^2+a\sqrt[3]{b}+\sqrt[3]{b^2}$


 Bentuk sekawan dari $\displaystyle a+\sqrt[3]{b}$ adalah $\displaystyle a^2-a\sqrt[3]{b}+\sqrt[3]{b^2}$


Bentuk sekawan dari $\displaystyle \sqrt[3]{a}-b$ adalah $\displaystyle\sqrt[3]{a^2}+b\sqrt[3]{a}+b^2$


 Bentuk sekawan dari $\displaystyle \sqrt[3]{a}+b$ adalah $\displaystyle\sqrt[3]{a^2}-b\sqrt[3]{a}+b^2$



Merasionalkan Penyebut Akar Pangkat Tiga


Setelah mengetahui bentuk sekawan akar pangkat tiga, sekarang kita akan menggunakan bentuk sekawan tersebut untuk merasionalkan penyebut akar pangkat tiga, perhatikan beberapa contoh di bawah ini:

Contoh 1

Bentuk rasional dari $\displaystyle\frac{9}{2\sqrt[3]{2}}$ adalah ....

Jawab:
Bentuk akar sekawan dari $\sqrt[3]{2}$ adalah $\sqrt[3]{4}$
$\begin{align*}\frac{9}{2\sqrt[3]{2}}\times\frac{\sqrt[3]{4}}{\sqrt[3]{4}}&=\frac{9\sqrt[3]{4}}{2\times 2}\\&=\frac{9}{4}\sqrt[3]{4}\end{align*}$

Contoh 2

Bentuk rasional dari $\displaystyle\frac{5}{\sqrt[3]{7}-\sqrt[3]{2}}$ adalah ....

Jawab:

Bentuk akar sekawan dari $\sqrt[3]{7}-\sqrt[3]{2}$ adalah $\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}$ maka:

$\begin{align*}\frac{5}{\sqrt[3]{7}-\sqrt[3]{2}}\times\frac{\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}}{\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}}&=\frac{5\left(\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\right)}{7-2}\\&=\frac{5\left(\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\right)}{5}\\&=\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\end{align*}$

Contoh 3

Bentuk rasional dari $\displaystyle\frac{\sqrt[3]{2}}{\sqrt[3]{2}+1}$ adalah ....

Jawab:

Bentuk akar sekawan dari $\sqrt[3]{2}+1$ adalah $\sqrt[3]{4}-\sqrt[3]{2}+1$

$\begin{align*}\frac{\sqrt[3]{2}}{\sqrt[3]{2}+1}\times\frac{\sqrt[3]{4}-\sqrt[3]{2}+1}{\sqrt[3]{4}-\sqrt[3]{2}+1}&=\frac{\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}+1\right)}{2+1}\\&=\frac{\sqrt[3]{8}-\sqrt[3]{4}+\sqrt[3]{2}}{3}\\&=\frac{2-\sqrt[3]{4}+\sqrt[3]{2}}{3}\\&=\frac{1}{3}\left(2-\sqrt[3]{4}+\sqrt[3]{2}\right)\end{align*}$



Contoh Penerapan dalam Menyelesaikan Masalah Limit

Berikut ini contoh soal limit yang melibatkan akar pangkat tiga,

$\displaystyle\lim_{x\to 8}\frac{x-8}{\sqrt[3]{x}-2}=$ ....

Jika kita substitusi langsung $x=8$, maka akan kita peroleh bentuk tak tentu $\displaystyle\frac{0}{0}$, dengan demikin diperlukan manupulasi aljabar untuk menyelesaikannya dengan cara menghilangkan faktor persekutuan pembilang dan penyebut yang menyebabkan nilai $\displaystyle\frac{0}{0}$.

Bentuk akar sekawan dari $\sqrt[3]{x}-2$ adalah $\sqrt[3]{x^2}+2\sqrt[3]{x}+4$, dan $\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)=x-8$ maka:

$\begin{align*}\lim_{x\to 8}\frac{x-8}{\sqrt[3]{x}-2}\times\frac{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}&=\lim_{x\to 8}\frac{(x-8)(\sqrt[3]{x^2}+2\sqrt[3]{x}+4)}{x-8}\\&=\lim_{x\to 8}\sqrt[3]{x^2}+2\sqrt[3]{x}+4\\&=\sqrt[3]{64}+2\sqrt[3]{8}+4\\&=4+4+4\\&=12\end{align*}$

Demikianlah cara merasionalkan penyebut akar pangkat tiga yang dapat saya bahas. 
Semoga bermanfaat

Jumat, 17 Agustus 2018

Logaritma - Definisi, Sifat, Contoh Soal dan Pembahasan



m4th-lab.net - Logaritma, Definisi, Sifat-sifat, Contoh soal dan Pembahasan

Pada tulisan ini saya akan membahas logaritma dari konsep dasar, termasuk definsi dan sifat-sifat logaritma lengkap dengan contoh soal dan pembahasan. Materi mengenai logaritma ini dipelajari di kelas X pada matematika peminatan (untuk kurikulum 2013 revisi).

Informasi : Tulisan ini memuat karakter matematika dalam bentuk latex yang tidak responsive untuk media mobile. Jika ada karakter matematika yang terpotong, sebaiknya buka laman ini via PC/Laptop, atau via smartphone dengan posisi landscape.

Definisi Logaritma

Logaritma sangat erat kaitannya dengan eksponen atau perpangkatan. Loritma merupakan invers (kebalikan) dari perpangkatan (eksponen). Biasanya logaritma kita gunakan untuk menyelesaikan permasalahan suatu persamaan yang pangkatnya tidak diketahui. 

Pada materi eksponen kita telah mengetahui bentuk $\displaystyle a^x=b$ merupakan suatu bilangan berpangkat dengan $a$ sebagai basis (bilangan pokok), $x$ sebagai pangkat (eksponen) dan $b$ merupakan hasil perpangkatan yang disebut numerus. 

Dalam materi logaritma ini, yang akan kita cari adalah nilai pangkat atau eksponennya. Misalnya $2^x=32$, berapa nilai $x$ yang memenuhi? dengan mudah bisa kita jawab $x=5$ karena $2^5=32$. Lalu bagaimana cara mencari nilai $x$ dari persamaan $3^x=7$? untuk mencari nilai $x$ dari persamaan tersebut kita akan kesulitan. Untuk menyatakan nilai $x$ dari persamaan tersebut kita memerlukan suatu "alat" atau operasi matematika yang disebut dengan logaritma. Logaritma ditemukan oleh seorang matematikawan asal skotlandia bernama John Napier. Untuk memahami lebih jelas mengenai logaritma, perhatikan definisi logaritma sebagai berikut:

Definisi Logaritma

Jika $a\gt 0$, $a\ne 1$, dan $b\gt 0$ maka:



$\displaystyle a^x=b \Leftrightarrow x= ^a\!\log{b}$ 

$a$ disebut basis (bilangan pokok), $b$ disebut numerus, dan $x$ hasil logaritma (pangkat)

Sebagai catatan, pada beberapa buku atau karya tulis ilmiah tertutama yang berasal dari luar indonesia, penulisan letak basis logaritma bisa berbeda yaitu $\log_a{b}$ dengan $a$ sebagai basis dan $b$ numerus. Untuk logaritma basis 10, maka basis tidak perlu ditulis, misalnya $^{10}\!\log 100$ cukup ditulis $\log 100$. Jika basis logaritma berupa konstanta euler $(e)$ maka penulisan logaritma $^e\! \log b=\ln b$ dengan $e\approx 2,7182818284\cdots$ disebut sebagai logaritma natural

Berdasarkan definisi di atas, kita dapat mengubah bentuk perpangkatan ke dalam bentuk logaritma dan sebaliknya, kita pun dapat mengubah bentuk logaritma ke dalam bentuk perpangkatan. Perhatikan contoh berikut:

Contoh 1

Nyatakan bentuk perpangkatan berikut dalam bentuk logaritma!
1). $\displaystyle 5^3=125$
2). $\displaystyle 2^3=8$
3). $\displaystyle 5^x=7$
4). $\displaystyle a^b=c$
5). $\displaystyle 9^{\frac{1}{2}}=3$

Jawab


1). $\displaystyle 5^3=125\Leftrightarrow 3= ^5\!\log 125$
2). $\displaystyle 2^3=8\Leftrightarrow 3= ^2\!\log 8$
3). $\displaystyle 5^x=7 \Leftrightarrow x= ^5\!\log 7$
4). $\displaystyle a^b=c\Leftrightarrow b= ^a\!\log c$
5). $\displaystyle 9^{\frac{1}{2}}=3\Leftrightarrow\frac{1}{2}= ^9 \!\log 3$

Contoh 1

Nyatakan tiap persamaan logaritma berikut dalam bentuk perpangkatan!
1). $\displaystyle ^4\log 64=3$
2). $\displaystyle ^p\log q=r $

Jawab

1). $\displaystyle ^4\log 64=3\Leftrightarrow 64=4^3$
2). $\displaystyle ^p\log q=r \Leftrightarrow q=p^r$

Contoh 3

Tentukan nilai $x$ dari tiap persamaan berikut!
1). $\displaystyle ^3\log x=4$
2). $\displaystyle ^x\log 16=2$
3). $\displaystyle ^2\log 64=x$

Jawab


$\begin{align*}\text{1). } ^3\log x=4\Leftrightarrow x&=3^4\\x&=81\end{align*}$


$\begin{align*}\text{2). }^x\log 16 =2 \Leftrightarrow 16&=x^2\\x&=4\end{align*}$


$\begin{align*}\text{3). }^2\log 64=x\Leftrightarrow 64&=2^x\\2^6&=2^x\\x&=6\end{align*}$





Sifat-sifat Logaritma

Sifat-sifat logaritma dapat digunakan untuk mengubah bentuk-bentuk suatu logaritma ke bentuk-bentuk yang diinginkan. Sifat-sifat tersebut sebagai berikut:


Sifat-sifat Logaritma

  $\displaystyle ^a\log 1=0$
  $\displaystyle ^a\log a=1$
  $\displaystyle ^a\log b^n=n\times ^a\log b$
  $\displaystyle {}^{a^m} \log b^n =\frac{n}{m}\times ^a\log b$
  $\displaystyle ^a\log bc=^a\log b+^a\log c$
  $\displaystyle ^a\log\frac{b}{c}=^a\log b-^a\log c$
  $\displaystyle ^a\log b=\frac{1}{^b\log a}$
  $\displaystyle ^a\!\log b .^b\!\log c .^c\!\log d=^a\!\log d$
  $\displaystyle \frac{^a\!\log b}{^a\!\log c}=^c\!\log b$
$\displaystyle a^{^a\!\log b}=b$


Perhatikan contoh soal dan pembahasan berikut ini:

Contoh
Tentukan nilai dari $\displaystyle \frac{\log{5\sqrt{5}}+\log{\sqrt{3}}+\log 45}{\log {15}}$

 Jawab:
$\begin{align*}\displaystyle \frac{\log{5\sqrt{5}}+\log{\sqrt{3}}+\log 45}{\log {15}}&=\frac{\log{\left(5\sqrt{5}\times\sqrt{3}\times 45\right)}}{\log 15}\\&=\frac{\log{225\sqrt{15}}}{\log{15}}\\&=^{15}\log{225\sqrt{15}}\\&=^{15}\log 225 +^{15}\log \sqrt{15}\\&=^{15}\log{15^2}+^{15}\log{15^{\frac{1}{2}}}\\&=2+\frac{1}{2}\\&=\frac{5}{2}\end{align*}$

Soal Latihan:

Tentukan nilai dari $\displaystyle\frac{\left(^3\!\log 36\right)^2-\left(^3\!\log 4\right)^2}{^3\!\log\sqrt{12}}=$ ....



Jika ada bagian yang terpotong, sebaiknya buka laman ini melalui laptop/PC atau melalui smartphone dalam mode landscape.

$\begin{align*}\frac{\left(^3\!\log 36\right)^2-\left(^3\!\log 4\right)^2}{^3\!\log \sqrt{12}}&=\frac{\left(^3\!\log 36+^3\!\log 4\right)\left(^3\!\log 36-^3\!\log 4\right)}{^3\!\log\sqrt{12}}\\&=\frac{\left(^3\!\log 144\right)\left(^3\!\log 9\right)}{^3\!\log\sqrt{12}}\\&=\frac{^3\!\log144}{^3\!\log\sqrt{12}}\times ^3\!\log 9\\&=^\sqrt{12}\!\log 144\times 2\\&=^{12^{\frac{1}{2}}}\log{12^2}\times 2\\&=4\times 2\\&=8\end{align*}$


Penerapan Logaritma

Konsep logaritma banyak diterapkan di berbagai cabang ilmu pengetahuan. Diantaranya:

Dalam fisika, salah satunya digunakan untuk menentukan kuat intensitas cahaya

Dalam bidang ekonomi, logaritma digunakan dalam perhitungan terkait persoalan bunga majemuk

Dalam bidang kimia, salahsatunya digunakan dalam menentukan derajat keasaman zat (pH)

Dalam bidang Biologi, digunakan dalam persoalan pertumbuhan bakteri


Selain beberapa persoalan di atas, masih banyak lagi disiplin ilmu lain yang memanfaatkan konsep logaritma. Untuk itu konsep ini sangat penting untuk kita pelajari.

Demikianlah pemaparan mengenai logaritma, meliputi definisi, sifat-sifat dan beberapa contoh soal dilengkapi pembahasan. Semoga bermanfaat

Jika menginginkan tulisan ini dalam format pdf, silakan download melelui tombol di bawah ini:


Fungsi Eksponensial - Matematika Peminatan Kelas X

Pada tulisan ini kita akan belajar mengenai fungsi eksponensial. Pada kurikulum 2013 revisi materi ini dipelajari di kelas X pada matematika peminatan. Penerapan fungsi eksponensial banyak ditemui di berbagai bidang, seperti bidang ekonomi, fisika, biologi, pertanian, dan sebagainya. Jadi, materi ini sangat penting untuk kita pelajari.

Definisi Fungsi Eksponensial

Fungsi eksponensial adalah fungsi yang memetakan setiap $\displaystyle x\in$ bilangan real ke $\displaystyle f(x)=a^x$ dengan $a\ne 1$ dan $a\gt 0$

Bentuk umum fungsi eksponensial adalah $\displaystyle y=f(x)=k a^x$  atau dapat ditulis $\displaystyle f:x\rightarrow ka^x$

Pada bentuk umum di atas, $x$ disebut sebagai variabel atau peubah bebas dengan domain  $\displaystyle D=\left\{-\infty \lt x\lt \infty, x\in R \right\}$.  $a$ disebut bilangan pokok atau basis, dengan syarat $a\gt 0$ dan $a\ne 1$. $y$ disebut sebagai variabel tak bebas dan $k$ disebut sebagai konstanta dengan $k\ne 0$.

 Grafik Fungsi Eksponensial

Grafik fungsi eksponensial dengan bentuk $\displaystyle f(x)=k. a^x$ atau $\displaystyle y=k.a^x$ jika kita gambar pada diagram cartesius, maka:

Kurva akan monoton naik jika $a\gt 1$

Kurva akan monoton turun jika $0\lt a\lt 1$

Kurva memotong sumbu $Y$ di titik $(0, k)$

Sumbu $X$ merupakan Asimtot

Perhatikan gambar di bawah ini

Grafik Fungsi Eksponensial $y=k.a^x$ dengan $a\gt 1$



Dari gambar di atas, bisa kita lihat bahwa:

1). Kurva fungsi eksponenseial $y=f(x)=k.a^x$ dengan $k\ne 0$ dan $a>1$, kurva monoton naik, karena untuk setiap $x_1 \lt x_2$ maka $f(x_1)\lt f(x_2)$ atau dengan kata lain "ketika nilai $x$ semakin besar, maka nilai $y$ pun semakin besar, dan sebaliknya ketika $x$ semakin kecil, maka nilai $y$ pun semakin kecil". 

2). Kurva fungsi eksponensial $y=f(x)=k.a^x$ memotong sumbu $Y$ di titik $(0, k)$.

3). Sumbu $X$ sebagai asimtot, maksudnya untuk $x$ menuju $-\infty$ maka nilai $y$ semakin mendekati nol atau dengan kata lain kurva semakin mendekati sumbu $X$ namun  tidak pernah memotong sumbu $X$.

Grafik Fungsi Eksponensial $y=k.a^x$ dengan $1\lt a\lt 1$

Dari gambar di atas, bisa kita lihat bahwa:

1). Kurva fungsi eksponenseial $y=f(x)=k.a^x$ dengan $k\ne 0$ dan $a>1$, kurva monoton turun, karena untuk setiap $x_1 \lt x_2$ maka $f(x_1)\gt f(x_2)$ atau dengan kata lain "ketika nilai $x$ semakin besar, maka nilai $y$ pun semakin kecil, dan sebaliknya ketika $x$ semakin kecil, maka nilai $y$ pun semakin besar". 

2). Kurva fungsi eksponensial $y=f(x)=k.a^x$ memotong sumbu $Y$ di titik $(0, k)$.

3). Sumbu $X$ sebagai asimtot, maksudnya untuk $x$ menuju $\infty$ maka nilai $y$ semakin mendekati nol atau dengan kata lain kurva semakin mendekati sumbu $X$ namun  tidak pernah memotong sumbu $X$.

 Contoh Soal dan Pembahasan

Contoh 

Perhatikan gambar berikut:
Tentukan persamaan grafik fungsi pada gambar di atas!

 Pembahasan:

Misal persamaan kurva adalah $y=ka^x$. 
Pada gambar di atas, dapat kita lihat bahwa kurva memotong sumbu $Y$ di titik $(0, 4)$ maka kita peroleh nilai $k=4$, sehingga persamaan kurva adalah $y=4a^x$

Pada gambar di atas, diketahui pula kurva melalui titik $(1, 8)$. Berdasarkan informasi tersebut, kita akan menentukan nilai $a$ dengan mensubstitusi titik $(1,8)$ terhadap fungsi $y=4a^x$, maka kita peroleh:

$\begin{align*}y&=4a^x\\8&=4a^1\\a&=2\end{align*}$

Dengan mensubstitusi nilai $k=4$ dan nilai $a=2$ terhadap persamaan $y=ka^x$ maka kita peroleh persamaan grafik fungsi sebagai berikut:

$\begin{align*}y&=4.2^x\\&=2^2.2^x\\&=2^{x+2}\end{align*}$

Maka persamaan grafik fungsi di atas adalah $\displaystyle y=2^{x+2}$

Demikian pembahasan singkat mengenai fungsi eksponensial, jika anda menginginkan artikel ini dalam format pdf silakan klik tombol download di bawah ini, semoga bermanfaat.



Download Soal Ujan Nasional (UN) SMA 2018 Fisika




 m4th-lab  Download Soal UN Fisika 2018

Ujian nasional yang dikenal dengan ujian nasional atau UN merupakan kegatan yang setiap tahun dilaksanakan khusus untuk ujung untuk setiap jenjenang, baik SD, SMP maupun SMA. Untuk tingkat SMP / MTs dan SMA / MA / SMK, sebagian besar sekolah sudah menerapkan ujian nasional dengan menggunkan komputer yang dikenal dengan UNBK (Ujian Nasional Berbasis Komputer) meskipun beberapa sekolah (sebagian kecil) masih ada yang melaksanakan Ujian Nasional Berbasis Kertas dan Pensil (UNKP), hal ini menyebabkan sulitnya kita memperoleh soal-soal Ujian Nasional.




Sebelumnya, m4th-lab telah membagikan beberapa paket naskah soal UN 2018 Matematika SMA jurusan IPA dan IPS dan naskah soal UN 2018 Matematika SMK kelompok TKP  dan juga soal UN 2018 matematika  SMK  kelompok AKP .  Soal-soal tersebut merupakan naskah asli Ujian Nasional.

Pada kesempatan ini, kami akan membagikan soal Ujian Nasional (UN) tahun 2018 bidang fisika, yang dapat dengan mudah anda download sebagai bahan persiapan menghadapi UN 2019 mendatang. Silakan download melalui link di bawah ini:



Selain itu, silakan download juga naskah asli soal-soal Ujian Nasional legkap semua pelajaran untuk 10 tahun terakhir melalui link di bawah ini



Itulah soal UN Fisika Tahun 2018 yang dapat kami bagikan. Semoga bermanfaat.

Minggu, 12 Agustus 2018

Integral Tak Tentu - Matematika Wajib Kelas XI




Pada kurikulum 2013 revisi, materi integral dipelajari di kelas XI pada matematika wajib.
Dalam kalkulus, ada dua konsep dasar integral yang dipelajari, yaitu integral tak tentu (indefinite integral) dan integral tentu (definite integral).

Konsep integral tak tentu merupakan kebalikan atau invers dari turunan atau diferensial, oleh karena itu integral disebut juga sebagai anti turunan. Dengan kata lain, integral tak tentu atau anti diferensial merupakan cara untuk menemukan fungsi asal dari suatu fungsi yang sudah diturunkan.

Untuk lebih jelasnya perhatikan penjelasan mengenai integral berikut ini  dilengkapi dengan contoh soal dan pembahasan.

Integral Tak Tentu

Seperti yang sudah disebutkan di atas, integral merupakan kebalikan dari turunan. Sebagai contoh, perhatikan ilustrasi berikut:

Misal ada soal seperti ini, Tentukan turunan dari $\displaystyle f(x)=4x^3+2x^2-5x+3$  berdasarkan konsep turunan yang pernah kita pelajari maka kita bisa menjawab bahwa turunan dari $\displaystyle f(x)=4x^3+2x^2-5x+3$ adalah $\displaystyle f'(x)=12x^2+4x-5$.

Tapi bagaimana jika pertanyaanya adalah, tentukan fungsi $f(x)$ jika diketahui turunan dari $f(x)$ adalah $f'(x)=12x^2+4x-5$. Untuk menjawab pertanyaan tersebut kita butuh konsep antiturunan atau integral.

Jika $F'(x)=f(x)$, maka $\displaystyle\int f(x)=F(x)+C$ dengan $C$ suatu konstanta dan $C\in$ bilangan real.

  Rumus Dasar Integral

Untuk setiap bilangan real $n\ne -1$, maka: $$\int x^n dx=\frac{1}{n+1}x^{n+1}+C$$
Kebenaran rumus ini dapat dengan mudah kita buktikan dengan menurunkan fungsi pada ruas kanan sebagai berikut:

$\displaystyle\frac{d}{dx}\left(\frac{1}{n+1}x^{x+1}+C\right)=\frac{n+1}{n+1}x^{(n+1)-1}+0=x^n$

  Rumus perkalian skalar
$$\int k f(x) dx=k\int f(x) dx $$ untuk setiap $k$ bilangan real

Perhatikan beberapa contoh soal dan pembahasan berikut ini:

  Rumus Penjumlahan dan Pengurangan Integral
$$\int\left(f(x)\pm g(x)\right)dx=\int f(x)dx\pm\int g(x) dx$$

Contoh 1

$\displaystyle \int x^4 dx=$ ....

  Jawab:
Dalam integral di atas, $n=4$. Dengan menggunkan Rumus Dasar Integral, maka kita peroleh

$\begin{align*}\int x^4 dx&=\frac{1}{4+1}x^{4+1}+C\\&=\frac{1}{5}x^5+C\end{align*}$

  Contoh 2

$\displaystyle\int \frac{1}{x^3} dx=$ ....

  Jawab:
$\displaystyle \frac{1}{x^3}$ dapat dinyatakan sebagai $x^{-3}$, maka:

$\begin{align*}\int\frac{1}{x^3} dx&=\int x^{-3} dx\\&=\frac{1}{-3+1}x^{-3+1}+C\\&=-\frac{1}{2}x^{-2}+C\\&=-\frac{1}{2x^2}+C\end{align*}$

  Contoh 3

$\displaystyle\int \sqrt[3]{x^2}=$ ....

 Jawab:

$\displaystyle\sqrt[3]{x^2}$ dapat dinyatakan sebagai $\displaystyle x^{\frac{2}{3}}$, maka:

$\begin{align*}\int \sqrt[3]{x^2} dx&=\int{x^{\frac{2}{3}}}dx\\&=\frac{1}{\frac{2}{3}+1}x^{\frac{2}{3}+1}+C\\&=\frac{1}{\frac{5}{3}}x^{\frac{5}{3}}+C\\&=\frac{3}{5}x^{\frac{5}{3}}+C\\&=\frac{3}{5}x\sqrt[3]{x^2}+C\end{align*}$

Baca juga : Download Soal Integral Tak Tentu pdf 

  Contoh 4

$\displaystyle\int {4x^3} dx=$ ....

  Jawab:

$\begin{align*}\int{4x^3}dx&=4\int{x^3}dx\\&=4.\frac{1}{3+1}x^{3+1}+C\\&=\frac{4}{4}x^4+C\\&=x^4+C\end{align*}$

  Contoh 5

$\displaystyle\int \left(3x^2-4x+5\right)=$ ....

  Jawab:

$\begin{align*}\int{\left(3x^2-4x+5\right)dx}&=3\int x^2 dx-4\int x dx+5\int dx\\&=3\left(\frac{1}{3}x^3\right)-4\left(\frac{1}{2}x^2\right)+5x+C\\&=x^3-2x^2+5x+C\end{align*}$

  Contoh 6

$\displaystyle\int \left(x^2-3\right)^2 dx=$ ....

  Jawab:

$\begin{align*}\int{\left(x^2-3\right)^2} dx&=\int\left(x^4-6x^2+9\right)dx\\&=\int x^4 dx-6\int x^2 dx+9\int dx\\&=\frac{1}{5}x^5-6\left(\frac{1}{3}x^3\right)+9x+C\\&=\frac{1}{5}x^5-2x^3+9x+C\end{align*}$

  Contoh 7

$\displaystyle\int\left(\frac{x^2+1}{\sqrt{x}}\right)dx=$ ....

  Jawab:

$\begin{align*}\int\left(\frac{x^2+1}{\sqrt{x}}\right)dx&=\int\left(\frac{x^2}{\sqrt{x}}+\frac{1}{\sqrt{x}}\right)dx\\&=\int\left(\frac{x^2}{x^{\frac{1}{2}}}+\frac{1}{x^{\frac{1}{2}}}\right)dx\\&=\int\left(x^{\frac{3}{2}}+x^{-\frac{1}{2}}\right)dx\\&=\frac{2}{5}x^{\frac{5}{2}}+2x^{\frac{1}{2}}+C\\&=\frac{2}{5}x^2\sqrt{x}+2\sqrt{x}+C\end{align*}$

Demikianlah contoh soal dan pembahasan integral tak tentu.
Tunggu pembahasan integral selanjutnya di blog ini



Perbedaan Tak Terdefinisi, Tak Hingga dan Tak Tentu [masalah pembagian dengan 0]




Dalam matematika banyak sekali istilah yang perlu kita pahami. Salah satu masalah yang muncul, ketika kita menemukan kasus pembagian suatu bilangan dengan nol, seperti beberapa pertanyaan berikut yang mungkin anda sendiri pernah mempertanyakannya, "Apakah  hasil dari $\frac{1}{0}$ adalah tak terdefinisi atau tak hingga?",  "Bagaimana dengan $\frac{0}{0}$?", "Berapa nilai dari $tan{\frac{\pi}{2}}$ ?", "Apakah $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}=\infty$?" dan banyak pertanyaan lain terkait pembagian nol.

Baiklah, mari kita bahas beberapa istilah berikut yaitu Tak terdefinisi, tak hingga, dan tak tentu

Tak Terdefinisi (Undefined)

Sesuai namanya "tak terdefinisi" adalah sesuatu yang tidak bisa kita definisikan. Dalam matematika, banyak hal yang tidak terdefinisi (undefined) beberapa contoh diantaranya misalnya dalam geometri, kita sering mendengar dengan istilah "titik", namun tidak ada definisi yang menjelaskan apa itu titik. Contoh lain di luar geometri misalnya suatu fungsi $\displaystyle f(x)=\sqrt{x}$ tidak terdefinisi untuk $x$ negatif dengan $x$ anggota bilangan real dan $f(x)\in$ Real.

Dalam aritmetika, ketika kita membagi suatu bilangan dengan nol, maka hasilnya adalah tidak terdefinisi (bukanlah tak hingga). Perhatikan ilustrasi berikut:

Kita tahu bahwa pembagian adalah invers (balikan) dari perkalian, misal $\displaystyle\frac{a}{b}=c$ maka dapat kita nyatakan $\displaystyle c\times b=a$.

Contoh, $\displaystyle\frac{18}{3}=6$ dapat kita nyatakan $6 \times 3=18$


Namun, bagaimana dengan $\displaystyle\frac{18}{0}=x$, maka $x\times 0=18$, apakah ada nilai $x$ yang memenuhi? tentu saja jawabannya tidak. Oleh sebab itu, berapapun bilangannnya (selain nol) jika dibagi dengan 0, maka tidak bisa didefinisikan (tak terdefinisi).


Masalah pembagian dengan 0 ini, saya sarankan anda membaca salah satu artikel di mathforum.org mengenai division by zero atau klik disini




Tak Hingga (Infinity)

Istilah "Tak Hingga" atau "Tak Berhingga" atau "Tak Terhingga" merupakan istilah yang kita gunakan untuk menunjukkan suatu nilai yang amat sangat besar (positif tak hingga) atau suatu nilai yang amat sangat kecil (negatif tak hingga), meskipun demikian "tak hingga" bukanlah suatu bilangan (baik real maupun kompleks).

Tak hingga disimbolkan dengan $\displaystyle\infty$.


Dalam kalkulus, tak hingga $(\displaystyle\infty)$ dapat kita perlakukan layaknya lambang suatu bilangan namun harus mengikuti beberapa aturan sebagai berikut:

  1. $\displaystyle a+\infty=\infty$ untuk $a\in$ Bilangan Real
  2. $\displaystyle a-\infty=-\infty$ untuk $a\in$ Bilangan Real
  3. $\displaystyle a\times\infty=\infty$ untuk $a>0$ dan $a\in$ Bilangan Real
  4. $\displaystyle a\times(-\infty)=-\infty$ untuk $a>0$ dan $a\in$ Bilangan Real
  5. $\displaystyle a\times \infty=-\infty$ untuk $a\lt 0$ dan $a\in$ Bilangan Real
  6. $\displaystyle a\times (-\infty)=\infty$ untuk $a\lt 0$ dan $a\in$ Bilangan Real
  7. $\displaystyle 0+\infty=\infty$
  8. $\displaystyle 0-\infty=-\infty$
  9. $\displaystyle\frac{\infty}{a}=\infty$ untuk $a\gt 0$ dan $a\ne\infty$
  10. $\displaystyle\frac{-\infty}{a}=-\infty$ untuk $a\gt 0$ dan $a\ne \infty$
  11. $\displaystyle\frac{a}{\infty}=0$
Sebagai tambahan literatur, silakan baca ini .


Bentuk Tak Tentu (Indeterminate Form)

Sama halnya seperti tak hingga, "bentuk tak tentu" bukanlah suatu bilangan.
Salah satu contoh bentuk tak tentu adalah pembagian nol dengan nol $\displaystyle\left(\frac{0}{0}\right)$. Mungkin beberapa orang mengira bahwa nilai dari $\displaystyle\frac{0}{0}$ adalah 1, karena pembilang dan penyebutnya sama. Namun, hal tersebut keliru. Karena $\displaystyle\frac{0}{0}$ tidak menghasilkan nilai tunggal, karena itu disebut sebagai bentuk tak tentu. Misal $\displaystyle\frac{0}{0}=k$ maka $0\times k=0$, persamaan $0\times k=0$ terpenuhi untuk sembarang nilai $k$ bilangan real, untuk itu $\displaystyle\frac{0}{0}$ tidak memiliki solusi tunggal

Dalam kalkulus, dikenal beberapa bentuk tak tentu sebagai berikut:

  1. $\displaystyle\frac{0}{0}$
  2. $\displaystyle\infty-\infty$
  3. $\displaystyle\frac{\infty}{\infty}$
  4. $\displaystyle 0\times \infty$
  5. $\displaystyle 0^0$
  6. $\displaystyle \infty^0$
  7. $\displaystyle 1^\infty$



Beberapa Masalah Terkait 

Berikut ini beberapa masalah yang berkaitan dengan istilah tak terdefinisi, tak hingga dan tak tentu

1. Dalam Trigonometri

Saya pribadi sering bertanya pada anak didik "Berapa nilai dari $\tan{90^\circ}$?". Banyak diantaranya yang menjawab "Tak hingga" ada juga yang menjawab "Tak terdifinisi". Menurut anda mana yang banar?

Nilai dari $\tan{90^\circ}$ adalah tak terdefinisi. Perhatikan grafik dari $y=\tan{x}$ berikut ini:
Dari grafik $y=\tan{x}$ di atas, bisa kita lihat bahwa kurva sama sekali tidak pernah menyentuh $x=\frac{\pi}{2}$, jadi tampak jelas bahwa nilai dari $\tan{90^\circ}$ tak terdefinisi. Bahkan secara umum dapat dikatakan sebagai berikut:





Dalam Trigonometri, $\tan{\theta}$, $\sec{\theta}$ tidak terdefinisi untuk $\theta=\left(n-\frac{1}{2}\right)\times 180^\circ$, dan $\cot{\theta}$ dan juga $\csc{\theta}$ tidak terdefinisi untuk $\theta=n\times 180^\circ$

2. Dalam Masalah Limit

Bagaimana jika saya bertanya berapakah nilai dari $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}$?

Jika jawaban anda adalah $\infty$ atau "tak hingga", maka jawaban anda belum tepat.

Nilai suatu limit fungsi ada atau terdefinisi jika limit kiri nilainya sama dengan limit kanan.

Untuk kasus soal di atas, limit kiri fungsi tersebut adalah negatif tak hingga, bisa kita tulis:
$$\lim_{x\to 1^-}{\frac{1}{x-1}}=-\infty$$
Sementara limit kanan fungsi tersebut adalah positif tak hingga, bisa kita tulis:
$$\lim_{x\to 0^+}{\frac{1}{x-1}}=+\infty$$
Karena limit kiri tidak sama dengan limit kanan, maka $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}$ adalah tidak terdefinisi, artinya limit tersebut tidak memiliki penyelesaian.
$$\lim_{x\to 1^-}{\frac{1}{x-1}}\ne\lim_{x\to 1^+}{\frac{1}{x-1}}\Rightarrow \lim_{x\to 1}{\frac{1}{x-1}}=\text{Tak Terdefinisi}$$

untuk memastikan, perhatikan grafik $\displaystyle y=\frac{1}{x-1}$ berikut ini:




Bisa kita lihat nilai untuk $x=1$ pendekatan dari kiri dan kanan tidaklah sama.

Jadi, tidak semua limit bisa kita cari nilainya, kita harus memastikan apakah limit tersebut terdefinisi atau tidak.

Demikianlah masalah terkait istilah tak terdefinisi, tak hingga, dan tak tentu.

Artikel ini hanya ditulis oleh penulis yang sangat minim ilmu, jadi sebaiknya jangan jadikan tulisan ini sebagai referensi utama, silakan anda cari referensi lain yang lebih terpercaya.

Semoga bermanfaat